1,694 research outputs found

    Widening the view angle of auto-multiscopic display, denoising low brightness light field data and 3D reconstruction with delicate details

    Get PDF
    This doctoral thesis will present the results of my work into widening the viewing angle of the auto-multiscopic display, denoising light filed data the enhancement of captured light filed data captured in low light circumstance, and the attempts on reconstructing the subject surface with delicate details from microscopy image sets. The automultiscopic displays carefully control the distribution of emitted light over space, direction (angle) and time so that even a static image displayed can encode parallax across viewing directions (light field). This allows simultaneous observation by multiple viewers, each perceiving 3D from their own (correct) perspective. Currently, the illusion can only be effectively maintained over a narrow range of viewing angles. We propose and analyze a simple solution to widen the range of viewing angles for automultiscopic displays that use parallax barriers. We insert a refractive medium, with a high refractive index, between the display and parallax barriers. The inserted medium warps the exitant lightfield in a way that increases the potential viewing angle. We analyze the consequences of this warp and build a prototype with a 93% increase in the effective viewing angle. Additionally, we developed an integral images synthesis method that can address the refraction introduced by the inserted medium efficiently without the use of ray tracing. Capturing light field image with a short exposure time is preferable for eliminating the motion blur but it also leads to low brightness in a low light environment, which results in a low signal noise ratio. Most light field denoising methods apply regular 2D image denoising method to the sub-aperture images of a 4D light field directly, but it is not suitable for focused light field data whose sub-aperture image resolution is too low to be applied regular denoising methods. Therefore, we propose a deep learning denoising method based on micro lens images of focused light field to denoise the depth map and the original micro lens image set simultaneously, and achieved high quality total focused images from the low focused light field data. In areas like digital museum, remote researching, 3D reconstruction with delicate details of subjects is desired and technology like 3D reconstruction based on macro photography has been used successfully for various purposes. We intend to push it further by using microscope rather than macro lens, which is supposed to be able to capture the microscopy level details of the subject. We design and implement a scanning method which is able to capture microscopy image set from a curve surface based on robotic arm, and the 3D reconstruction method suitable for the microscopy image set

    Widening Viewing Angles of Automultiscopic Displays using Refractive Inserts

    Get PDF

    Quasi-4-dimension ionospheric modeling and its application in PPP

    Get PDF
    The version of record of this article, first published in Satellite Navigation, is available online at Publisher’s website: http://dx.doi.org/10.1186/s43020-022-00085-zIonospheric delay modeling is not only important for GNSS based space weather study and monitoring, but also an efficient tool to overcome the long convergence time of PPP. In this study, a novel model, denoted as Q4DIM (Quasi-4-dimension ionospheric modeling) is proposed for wide-area high precision ionospheric delay correction. In Q4DIM, the LOS (line of sight) ionospheric delay from a GNSS station network is divided into different clusters according to not only latitude and longitude, but also elevation and azimuth. Both GIM (global ionosphere map) and SID (slant ionospheric delay) that traditionally used for wide-area and regional ionospheric delay modeling, respectively, can be regarded as special case of Q4DIM by defining proper grids in latitude, longitude, elevation and azimuth. Thus, Q4DIM presents a resilient model that is capable for both wide-area coverage and high precision. Then four different sets of clusters are defined to illustrate the properties of Q4DIM based on 200 EPN stations. The results suggested that Q4DIM is compatible with the widely acknowledged GIM products. Moreover, it is proved that by inducting the elevation and azimuth angle dependent residuals, the precision of the 2-dimensional GIM-like model, i.e., Q4DIM-2D, is improved from around 1.5 TECU to better than 0.5 TECU. In addition, by treating Q4DIM as a 4-dimensional matrix in latitude, longitude, elevation and azimuth, its sparsity is less than 5%, thus guarantees its feasibility in a bandwidth-sensitive applications, e.g., satellite-based PPP-RTK service. Finally, the advantage of Q4DIM in single frequency PPP over the 2-dimensional models is demonstrated with one month’s data from 30 EPN stations.Peer ReviewedPostprint (published version

    High-quality multi-wavelength quantum light sources on silicon nitride micro-ring chip

    Full text link
    Multi-wavelength quantum light sources, especially at telecom band, are extremely desired in quantum information technology. Despite recent impressive advances, such a quantum light source with high quality remains challenging. Here we demonstrate a multi-wavelength quantum light source using a silicon nitride micro-ring with a free spectral range of 200 GHz. The generation of eight pairs of correlated photons is ensured in a wavelength range of 25.6 nm. With device optimization and noise-rejecting filters, our source enables the generation of heralded single-photons - at a rate of 62 kHz with gh(2)(0)=0.014±0.001g^{(2)}_{h}(0)=0.014\pm0.001, and the generation of energy-time entangled photons - with a visibility of 99.39±0.45%99.39\pm 0.45\% in the Franson interferometer. These results, at room temperature and telecom wavelength, in a CMOS compatible platform, represent an important step towards integrated quantum light devices for the quantum networks.Comment: 7 pages, 4 figure

    Solution processed graphene structures for perovskite solar cells

    Get PDF
    Organometallic trihalide perovskite light absorber based solar cells have drawn increasing attention because of their recent rapid increase in power conversion efficiency (PCE). These photovoltaic cells have relied significantly on transparent conducting oxide (TCO) electrodes which are costly and brittle. Herein, solution processed transparent conductive graphene films (TCGFs) are utilized, for the first time, as an alternative to traditional TCO electrodes at the electron collecting layer in perovskite solar cells (PSCs). By investigating and optimizing the trade-off between transparency and sheet resistance (Rs) of the graphene films, a PCE of 0.62% is achieved. This PCE is further improved to 0.81% by incorporating graphene structures into both compact and mesoporous TiO2 layers of the solar cell. We anticipate that the present study will lead to further work to develop graphene-based transparent conductive electrodes for future solar cell devices

    Graft-to-recipient weight ratio exerts nonlinear effects on prognosis by interacting with donor liver macrosteatosis

    Get PDF
    AimTo investigate the interactions between the graft-to-recipient weight ratio (GWRWR) and other risk factors responsible for inferior allograft outcomes.MethodsA total of 362 patients who received liver transplantation (LT) were enrolled. Indicators such as graft/recipient weight and other prognostic factors were collected. Comparisons of indicators and survival analysis were performed in groups categorized by the GWRWR. Interactions of large-for-size grafts (LFSGs) with graft macrosteatosis (MaS) were evaluated in terms of relative excess risk caused by interaction (RERI) and attributable proportion (AP). Cytoscape visualized the role of LFSGs in the risk profile for poor prognosis.ResultsBased on the GWRWR, LT cases can be categorized into three subgroups, standard (1%–2.5%), optimal (2.5%–3.0%), and inferior prognosis (>3.0%). Survival analysis confirmed clear separations in cases categorized by the above-defined limits on the GWRWR (P < 0.05). LFSGs caused inferior prognosis by initiating positive interactions with MaS severity.ConclusionThe GWRWR exerted nonlinear effects on prognosis in deceased donor LT cases. LFSGs (GWRWR > 3.0%) caused inferior outcomes, while grafts sized within (2.5%–3.0%) had optimal post-transplant prognosis. MaS increased the risk of poor prognosis by exerting positive synergistic effects on LFSGs

    Search for C-parity violation in J/ψγγJ/ \psi \to \gamma\gamma and γϕ \gamma \phi

    Full text link
    Using 1.06×1081.06\times10^8 ψ(3686)\psi(3686) events recorded in e+ee^{+}e^{-} collisions at s=\sqrt{s}= 3.686 GeV with the BESIII at the BEPCII collider, we present searches for C-parity violation in J/ψγγJ/\psi \to \gamma\gamma and γϕ \gamma \phi decays via ψ(3686)J/ψπ+π\psi(3686) \to J/\psi \pi^+\pi^-. No significant signals are observed in either channel. Upper limits on the branching fractions are set to be B(J/ψγγ)<2.7×107\mathcal{B}(J/\psi \to \gamma\gamma) < 2.7 \times 10^{-7} and B(J/ψγϕ)<1.4×106\mathcal{B}(J/\psi \to \gamma\phi) < 1.4 \times 10^{-6} at the 90\% confidence level. The former is one order of magnitude more stringent than the previous upper limit, and the latter represents the first limit on this decay channel.Comment: 7 pages, 2 figure

    Search for the radiative transitions ψ(3770)γηc\psi(3770)\to\gamma\eta_c and γηc(2S)\gamma\eta_c(2S)

    Full text link
    By using a 2.92 fb1^{-1} data sample taken at s=3.773\sqrt{s} = 3.773 GeV with the BESIII detector operating at the BEPCII collider, we search for the radiative transitions ψ(3770)γηc\psi(3770)\to\gamma\eta_c and γηc(2S)\gamma\eta_c(2S) through the hadronic decays ηc(ηc(2S))KS0K±π\eta_c(\eta_c(2S))\to K^0_SK^\pm\pi^\mp. No significant excess of signal events above background is observed. We set upper limits at a 90% confidence level for the product branching fractions to be B(ψ(3770)γηc)×B(ηcKS0K±π)<1.6×105\mathcal{B}(\psi(3770)\to\gamma\eta_c)\times \mathcal{B}(\eta_c\to K^0_SK^\pm\pi^\mp) < 1.6\times10^{-5} and B(ψ(3770)γηc(2S))×B(ηc(2S)KS0K±π)<5.6×106\mathcal{B}(\psi(3770)\to\gamma\eta_c(2S))\times \mathcal{B}(\eta_c(2S)\to K^0_SK^\pm\pi^\mp) < 5.6\times10^{-6}. Combining our result with world-average values of B(ηc(ηc(2S))KS0K±π)\mathcal{B}(\eta_c(\eta_c(2S))\to K^0_SK^\pm\pi^\mp), we find the branching fractions B(ψ(3770)γηc)<6.8×104\mathcal{B}(\psi(3770)\to\gamma\eta_c) < 6.8\times10^{-4} and B(ψ(3770)γηc(2S))<2.0×103\mathcal{B}(\psi(3770)\to\gamma\eta_c(2S)) < 2.0\times10^{-3} at a 90% confidence level.Comment: 10 pages, 4 figure
    corecore